Compressed domain video processing of meetings for activity estimation in dominance classification and slide transition detection

نویسندگان

  • Chuohao Yeo
  • Kannan Ramchandran
  • Sileye Ba
  • Gerald Friedland
  • Daniel Gatica-Perez
  • Yan Huang
  • Hayley Hung
  • Dinesh Jayagopi
  • Jean-Marc Odobez
چکیده

Compressed domain processing of video has been a widely used tool in enabling computationally efficient video analysis in the last decade or so since the standardization of video compression in the form of MPEGx/H.26x. We consider the use of such features in the meeting domain to reduce the processing time of video analysis. We review the various compressed domain features that can be extracted easily from compressed videos. In this report, two applications of interest in meeting analysis are considered. First, we present work on activity level estimation which is used in dominance modeling of meeting participants. Second, we look at the problem of detecting slide transitions in meetings, which can be used as contextual cues for estimating the visual focus of attention of meeting participants. In both applications, our experimental results show that compressed-domain methods do as well as their corresponding pixel-domain methods, but only require a fraction of computational costs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed Domain Scene Change Detection Based on Transform Units Distribution in High Efficiency Video Coding Standard

Scene change detection plays an important role in a number of video applications, including video indexing, searching, browsing, semantic features extraction, and, in general, pre-processing and post-processing operations. Several scene change detection methods have been proposed in different coding standards. Most of them use fixed thresholds for the similarity metrics to determine if there wa...

متن کامل

Video Abstraction in H.264/AVC Compressed Domain

Video abstraction allows searching, browsing and evaluating videos only by accessing the useful contents. Most of the studies are using pixel domain, which requires the decoding process and needs more time and process consuming than compressed domain video abstraction. In this paper, we present a new video abstraction method in H.264/AVC compressed domain, AVAIF. The method is based on the norm...

متن کامل

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods

Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...

متن کامل

Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods

Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008